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The Effect of Regularization on Variance Error

Brett Ninness and Håkan Hjalmarsson

Abstract—This note addresses the problem of quantifying the effect of
noise induced error(so called “variance error”) in system estimates found
via a regularised cost criterion. It builds on recent work by the authors
in which expressions for nonregularised criterions are derived which are
exact for finite model order. Those new expressions were established to be
very different to previous quantifications that are widely used but based
on asymptotic in model order arguments. A key purpose of this note is to
expose a rapprochement between these new finite model order, and the pre-
existing asymptotic model order quantifications. In so doing, a further new
result is established. Namely, that variance error in the frequency domain is
dependent on the choice of the point about which regularization is affected.

Index Terms—Orthonormal bases, parameter estimation, system identi-
fication, variance error.

I. INTRODUCTION

When performing system identification via the widely used predic-
tion-error method with a quadratic criterion [1], [2], then a seminal
result is that under open-loop conditions the noise-induced error, as
measured by the variability of the ensuing frequency response estimate
G ej!; �nN , may be quantified via the following approximation [1],
[3]–[5]:

Var G ej!; �nN �
m

N

��(!)

�u(!)
: (1)

Here,�� and�u are, respectively, themeasurement noise and input ex-
citation power spectral densities, and �nN is the prediction error estimate
based onN observed data points of a vector �n 2 Rn that parameter-
izes a model structureG(q; �n) for which(essentially) the model order
m = dim �n=(2d)where d is the number of denominator polynomials
to be estimated in the model structure.
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A fundamental aspect of the approximation (1) is that it is derived
by taking the limiting value of the variance as model orderm tends to
infinity, and then employing that limiting value as an approximation
for finite m.
Motivated by the desire to improve the accuracy of variance error

quantifications, [6] and [7] have derived new expressions that are exact
for finite model order (although they are still based on limiting argu-
ments with respect to observed data length N ).
As discussed in [6], there can be very large discrepancies between the

new quantifications derived for finite-model order [6], and the approx-
imation (1); [6] illustrates orders of magnitude difference on a simple
example.
A key purpose of this note is to address this issue and provide a rap-

prochement between the results. The approach taken here is to derive
new quantifications that are exact for finite model order. Although fi-
nite, this order may also be arbitrarily large, provided an appropriate
regularised criterion is used to ensure that at the arbitrarily large model
order, the limiting (in N ) estimate is uniquely defined.
Essentially, via this strategy, the work here establishes that when the

regularising point (in parameter space) implies that any pole zero can-
cellations in the estimated model are constrained to be at the origin,
then as model order m increases, the “exact”(for finite-model order)
variance expression becomes arbitrarily close to the well known ap-
proximation (1). However, when the pole zero cancellations are not at
the origin, the rapprochement is lost. This fact exposes the further new
result that variance error (in the frequency domain) is dependent on the
point about which regularization is imposed.
As overview of the organization of this note, Section II makes con-

crete the estimation algorithms and model structures being considered.
Certain key ideas, notation and definitions are also introduced. Sec-
tion III presents themain technical results, which are new variance error
quantifications that are novel in that they do not depend on asymptotic
in model order arguments, yet they still apply for model orders possibly
greater than that of an underlying true system. Section IV discusses the
ramifications and practical consequences of these results and, in par-
ticular, uses them to argue a rapprochement between new finite model
order expressions [6] and pre-existing asymptotic model order approx-
imations [3]. Section V provides concluding remarks and comments
about prospective future studies.

II. PROBLEM FORMULATION

In what follows, it is assumed that the relationship between an ob-
served input data record futg and output data record fytg obeys

S : yt = G(q)ut + �t �t = H(q)et (2)

and that this is modeled according to

M : yt = G(q; �n)ut +H(q; �n)et (3)

where the “dynamicsmodel”G(q; �n) and the “noisemodel”H(q; �n)
are jointly parametrized by a vector �n 2 Rn and are of the rational
forms (A(q; �n)�D(q; �n) that follow are all polynomials in the back-
ward shift operator q�1)

G(q; �n) =
B(q; �n)

A(q; �n)
H(q; �n) =

C(q; �n)

D(q; �n)
(4)

while fetg in (3) is a zero-mean white noise sequence that satisfies
E e2t = �2, E jetj

8 < 1.
The postulated relationship (3) can encompass a range of model

structures such as FIR, ARMAX, “Output-Error,” and “Box-Jenkins”
[1], [2], [8]. For all these cases, sinceH(q; �n) is also constrained to be
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monic (i.e., limjqj!1H(q; �n) = 1) for all �, then the mean-square
optimal one-step ahead predictor yt(�n) based on the model structure
(3) is [1]

yt(�
n) = H

�1(q; �n)G(q; �n)ut + 1�H
�1(q; �n) yt (5)

with associated prediction error

"t(�
n) yt � yt(�

n) = H
�1(q; �n) [yt �G(q; �n)ut] : (6)

Using this, a regularised quadratic estimation criterion may be defined
as

VN(�
n
; �) =

1

2N

N

t=1

"
2

t (�
n) +

�

2
k�n � �

n
� k2 (7)

and then used to construct the prediction error estimate �nN(�) of �
n as

�
n
N(�) argmin

� 2�
VN (�

n
; �) (8)

where � � Rn is compact. In (7) the norm k � k is the Euclidean one,
and � > 0 is a so-called “regularising” parameter.
The point of using the regularised criterion is that in the situation

considered in this note of the model structureM being of the Box-
Jenkins or Output-Error form then, as established in [1], [9] under mild
assumptions, the unregularised (� = 0) estimate �nN (0) converges with
increasing N according to

lim
N!1

�
n
N (0) = �

n
�

argmin
� 2�

lim
N!1

E fVN(�n; 0)g w:p:1: (9)

Note that this limiting estimate �n� is not uniquely defined in cases
where the true model order for the system S is less than that of the
model structure M since pole-zero pairs beyond those necessary to
capture the underlying true dynamics may cancel in an infinite variety
of ways while still delivering the same transfer function.
At the same time, the purpose of this note is to study the relationship

between the quantification (1) and the asymptotic in model order result
which generates it; viz. [1], [3]–[5]

lim
m!1

lim
N!1

N

m
Var G e

j!
; �

n
N =

��(!)

�u(!)
: (10)

Hence, consideration of the overmodeled situation is unavoidable. In
order to address it, while also ensuring that the limiting estimate �n� is
well defined, the regularised criterion (7) is employed, with �n� being
any value such that "t(�n� ) = et.
One contribution of this note is to establish that, while there is

freedom in the selection of the regularization point �n� , the precise
choice of �n� (in terms of the excess pole-zero cancellations it implies)
can have a significant effect on estimate variability in the frequency
domain.
At this point it is worth noting that the regularization approach

taken here is the identical to that employed in the original work [3].
There it was emphasised that there is no practical difficulty implied
by the fact that �nN(�) defined as the minimizer of (7) is unrealisable
since �n� is unknown to the user. It is introduced here (and in [3])
merely to provide a technical artifice for defining the unique estimate
lim�!0G ej!; �nN(�) .
With this in mind, this note employs the fact that asN increases, the

estimate �nN converges in law to a normally distributed random variable
with mean value �n� according to [1], [8], and [10]

p
N �

n
N � �

n
�

D�!N (0; Pn) as N !1 (11)

and, furthermore, under the added assumption ofE jetj8 <1 then
as established in [1, App. 9B]

lim
N!1

Var �
n
N � �

n
� = Pn (12)

where, in the particular case considered in this note of the model struc-
ture (3) being rich enough to encompass any true underlying dynamics
[1]

P
�1
n =

1

�2
E  t (�

n
� ) 

T
t (�n� ) : (13)

Furthermore, for some matrix of transfer functions�(q; �n), and some
quasistationary (possibly vector valued) signal �t(�n)

 t(�
n) � d

d�n
yt(�

n)

= �H
�1(q; �n)

d�(q; �n)

d�n
�t(�

n): (14)

Unfortunately, while this explicit formulation of Pn exists, in general
it does not provide significant insight into how various design variables
affect the accuracy of the estimated frequency functions G ej!; �nN

andH ej!; �nN . In response to this, [1], [3]–[5], and [11] have used
an approach of investigating how (11) manifests itself in the variability
�n(!) of [G ej!; �nN ,H ej!; �nN ]T ; the result being approxima-
tions such as (1).
Central to the contribution of [6] is the novel approach of recognising

that the problem of quantifying�n(!) is closely related to the problem
of quantifying the reproducing kernel for a certain space Xn which is
defined via the rows of thematrix (�n is assumed to be a column vector)

	(z; �n� ) H
�1 (z; �n� )

d�(z; �n)

d�n
� =�

S� (z) (15)

according to

Xn Span [	 (z; �n� )]
T

1
; . . . ; [	 (z; �n� )]

T

n
(16)

and where, in (15), the term S� (z) is a spectral factor (under mild
assumptions, this factor will be unique) associated with the process
f�t (�n� )g.
The space Xn for certain important model structures such as Box-

Jenkins, Output-Error, and ARMAX was derived in [6], to which we
refer the reader for more detail.
In relation to this, the fundamental quantity associated with this

space Xn of Cp valued functions termed the “reproducing kernel”
'n(�; !) : [��; �] � [��; �] ! C

p�p is an entity such that for any
� 2 Cp [6]

'n(�; !)� 2 Xn 8 ! 2 [��; �] (17)

and for any f 2 Xn

hf(�); 'n(�; !)�i = �
?
f(!) (18)

where the previous inner product is defined for arbitrary functions f; g :
[��; �] ! C

p according to

hf; gi = 1

2�

�

��

g
?(�)f(�)d�: (19)

While it is essential to introduce the reproducing kernel '(�; !) here,
since it will be fundamental to the quantification of the variance error of
regularised estimates, the reader is referred to the companion work [6]
for amore complete discussion of it together with concrete expressions.
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III. MAIN RESULTS

The main result of this note is a quantification of frequency
domain variability �n(!) that is not asymptotic in the model order
m. In fact, the following theorem establishes that the fundamental
variance quantification provided in [6, Th. 5.1] applies also for the
situation considered in this note of overmodeling combined with a
regularised estimation criterion.

Theorem 3.1: Suppose that �nN is calculated via the regularised cri-
terion (7) and using the model structure (3). Suppose further that the
following assumptions are satisfied.

1) "t (�n� ) = et where fetg is a zero mean i.i.d. process that satis-
fies E jetj

8 < 1.
2) The relationship (14) holds for some �(q; �n), and some
quasistationary (possibly vector valued) signal f�t(�n)g and for
which the power spectral density �� (!) of f�t (�n� )g satisfies
�� (!) > 0 8 ! 2 [��; �].

Then

lim
�!0

lim
N!1

N � Cov
G ej!; �nN(�)

H ej!; �nN(�)
= �n(!) (20)

where

�n(!) = ��(!)S
�?
� (ej!)'n(!;!)S

�1
� (ej!) (21)

with 'n(�; !) being the reproducing kernel for the space Xn defined
via (15) and (16).

Proof: See Appendix I.
While this core result applies for any model structure that can be cast

in the form (3), for the sake of concreteness it is worthwhile to consider
certain specific cases as a corollary to this main result. For this purpose,
the model structure (3) parametrized with polynomials of the form

A(q; �n) = 1 + a1q
�1 + a2q

�1 + � � �+ am q
�m (22)

B(q; �n) = b1q
�1 + b2q

�1 + � � �+ bm q
�m (23)

D(q; �n) = 1 + d1q
�1 + d2q

�1 + � � �+ dm q
�m (24)

C(q; �n) = 1 + c1q
�1 + c2q

�1 + � � �+ cm q
�m (25)

will be assumed when a Box-Jenkins model structure is referred to,
while the model structure (3) parametrized with the numerator and de-
nominator polynomials of the form (22) and (23) and

C(q; �n) = D(q; �n) = 1 (26)

will be assumed when we refer to an Output-Error model structure.
Corollary 3.1: Suppose that the conditions of Theorem 3.1 are sat-

isfied together with the following further assumptions.

1) et and ut are jointly quasistationary with cross-spectrum�ue �
0.

2) G (z; �n
�
) and H (z; �n

�
) may be written as

G (z; �n
�
) =

B(z)

A(z)
�
TG(z)

TG(z)
H (z; �n

�
) =

C(z)

D(z)
�
TH(z)

TH(z)
(27)

where all terms to the right of the equals signs in (27) are polyno-
mials in z�1 with B(z), A(z) being relatively prime and C(z),
D(z) being relatively prime.

3) TG(z) and TH(z) are of ordersmt andmt , respectively, and,
as previously,ma,md,mb,mc denote (respectively) the denom-
inator and numerator orders of G(z; �n) and H(z; �n).

4) With F (z) being a spectral factor of�u(!), thenAy(z) defined
as

Ay(z) = A
2(z)TG(z)

C(z)

D(z)F(z)
(28)

is a polynomial in z�1 of degree no greater thanma+mb�mt .

Then, with f�1; . . . ; �m +m �m g being the zeros of
zm +m �m Ay(z) and f�1; . . . ; �m +m �m g being the

zeros of zm +m �m D(z)C(z)TH(z), if a Box-Jenkins model
structure is employed, then

lim
�!0

lim
N!1

N � Cov
G ej!; �nN(�)

H ej!; �nN(�)

= ��(!)

�(!)
� (!)

0

0 �(!)

�

(29)

where �(!) and �(!) are defined by the f�kg and f�kg according to

�(!)

m +m �m

k=1

1� j�kj
2

jej! � �kj
2

�(!)

m +m �m

k=1

1� j�kj
2

jej! � �kj
2 : (30)

Alternatively, if an Output Error model structure is employed, and
the condition H (z; �n

�
) = 1 substituted into (28) results in Ay(z)

being a polynomial of order no greater that ma + mb � mt , then
with �(!) begin defined as just described in the Box-Jenkins case, it
holds that

lim
�!0

lim
N!1

N � Var G e
j!
; �

n
N(�) =

�2

�u(!)
� �(!) (31)

for the Output-Error case.
Proof: See Appendix II.

IV. DISCUSSION

To explore some the implications of this result, let us consider the
situation addressed in the original result [3] whereinmb = ma = m.
Also, suppose that �u(!) is white so that F (z) = � a constant, and
that for the moment we restrict attention to the case of Output-Error
systems in which H(q) = H (q; �n

�
) = 1.

In this case, (28) becomes Ay(z) = A2(z)TG(z) which is a poly-

nomial in z�1 of order 2ma �mt , and which under the assumption
mb = ma is of order equal to ma + mb � mt . Therefore, all the
assumptions of Corollary 3.1 are satisfied, so that denoting the true un-
derlying system order asm? = ma�mt and defining the associated
factorizations

A(z) =

m

k=1

1� �kz
�1

TG(z) =

m�m

k=1

1� �kz
�1 (32)

leads to a variance approximation (exact with respect to the finite-
model order m) given by Corollary 3.1 as

Var G e
j!
; �

n
N (�) �

1

N

�2

�u(!)
�

2 �

m

k=1

1� j�kj
2

jej! � �kj
2 +

m�m

k=1

1� j�kj
2

jej! � �kj
2 (33)

where the factor of 2 arises in (33) since Ay(z) = A2(z)TG(z) and
hence the zeros f�kg of A(z) appear twice in the zeros of Ay(z) =

A2(z).
The essential point now is that even though, by virtue of the

pole-zero cancellations in the common set TG(z), the transfer function

lim�!0 G ej!; �nN(�) is uniquely defined, the same is not true for

the common zeros in TG(z). They are not unique, and depend only on
the choice of the regularization point �n

�
, which is constrained only

in that "t (�n� ) = et.
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(a) (b)

Fig. 1. Figures illustrating variability of regularised output-error estimates. The solid line is the Monte Carlo estimate of the true variability, the dash-dot line
is the pre-existing approximation (1) which does not account for system poles or model structure. The dashed line is the new approximation presented in (33)
whereby estimated system pole positions f� ; . . . ; � g and the excess pole-zero cancellations � inherent in the regularization are accounted for. (a) � = 0.
(b � = 0:99e .

If the zeros of TG(z) are taken all at the origin, then the associated
choice f�kg = 0 in (33) implies that for any finite-model orderm

Var G e
j!
; �
n
N(�)

�
1

N

�2

�u(!)
2 �

m

k=1

1� j�kj
2

jej! � �kj
2
+ (m�m?) : (34)

Now, ifm � m? then the first, frequency dependent term in the square
brackets will dominate the variance quantification. On the other hand,
ifm� m? then the second term will dominate and the variance quan-
tification will become

Var G e
j!
; �
n
N (�) �

m

N

�2

�u(!)
(35)

which is the one originally derived in [3] via an approach of allowing
m!1 and the same regularization approach as used in this note.
However, an important dividend of Theorem 3.1 is that, via the quan-

tification (33) it provides important insight into the nature of this latter
approximation (35), (1). Namely, that (35), (1) is largely determined by
the second term in (33), which has no relation to the underlying estima-
tion problem since it is not uniquely defined by it. Instead, it is purely
a function of the regularization.
For example, one could just as easily take �k 6= 0, and then the same

asymptotic inm argument would yield an approximation

Var G e
j!
; �
n
N(�) �

1

N

�2

�u(!)

m�m

k=1

1� j�kj
2

jej! � �kj
2

(36)

which is arbitrary, since the f�kg are arbitrary.
This is illustrated in Fig. 1, where an Output-Error model of order

ma = mb = 3 is fitted to data generated by the first-order system

G(q) =
0:05

q � 0:95
(37)

on the basis of observing an N = 10000 sample input-output data
record where the output fytg is corrupted by white Gaussian noise
of variance �2 = 10, and where the input futg is a realization of a
stationary, zero mean, unit variance white Gaussian process.
Since the system is overmodeled, a regularised estimate (7) is em-

ployed with regularization parameter � = 10�14.
When the regularization point �n

�
is chosen so that any excess

pole zero cancellations are at �k = 0, then the true variability (again
obtained by Monte Carlo average over 1000 experiment realizations)
together with the existing quantification (1) and the new quantification
(33) is shown in Fig. 1(a). The y-axis range has been specifically
chosen to match that of [6, Fig. 1(a)] in order to aid a comparison by
the reader which illustrates that the effect of the regularization zeros
at the origin is to reduce the discrepancy between the true variability
and the approximation (1).
However, if the regularization zeros are chosen at �1 = 0:99ej�=4,

�2 = 0:99e�j�=4 then the variability and quantifications are shown
in Fig. 1(b) to be such that the quantification (1) suffers from orders
of magnitude inaccuracy at low, mid, and high frequencies. This is de-
spite the fact that the model order m is triple the underlying true one
and, hence, might be considered “large enough” for approximate con-
vergence in (10) and, hence, accuracy of (1).
Clearly, in both cases the underlying true system and experimental

conditions are the same and, hence, the discrepancy between Fig. 1(a)
and (b) shows that, despite what might be expected, the quantification
(1) does not wholly elicit features inherent to the estimation problem.
Instead it may exhibit (possibly dominant) features that are entirely
nonintrinsic to the estimation problem, namely, the regularization
point.
Although the preceding argument was developed under special

assumptions on �u(!), the note concludes that in the case of
Output-Error or Box-Jenkins modeling, there is strong evidence that
the variance quantification (1) is one that is generically dominated by
the choice of a particular regularising point. This implies that when
using these model structures, it could be inappropriate to employ the
approximation (35), (1) in situations where no regularization has been
introduced or, if it has, the model order is not significantly higher than
what is believed to be the underlying true one.
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V. CONCLUSION

This note was motivated by a desire to reconcile pre-existing vari-
ance expressions, based on asymptotic in model order argument, with
new variance quantifications that are “exact” for finite model order.
Since a setting of either Box-Jenkins or Output-Error structures was

of interest, this necessitated the use of regularization. Hence, the main
theoretical results here can be viewed as contributions to a study of
how regularization affects estimation accuracy as judged by variability
in the frequency domain.
In this context, a key new finding was that the choice of regulariza-

tion point affects variability of the final estimate. The flow on from this,
in the context of the initial motivating question, was that a relationship
between asymptotic and finite-model order based quantifications was
exposed.
Namely, if the regularizing point is such that excess pole-zero cancel-

lations are constrained to be at the origin, then that part of the variance
quantification due to this regularization choice will, as the model order
increases well beyond the underlying true one, dominate the variance
in such as way as to make it arbitrarily close to pre-existing variance
expressions.
However, other choices of regularization point, implying nonorigin

pole-zero cancellations, will destroy this relationship.
It is believed that this analysis can contribute to an understanding of

how best to quantify variance error according to the estimation setup
being employed.

APPENDIX A

A. Proof of Theorem 3.1

Proof: First, by the definition of �nN (�)

dVN (�
n; �)

d�n
� =� (�)

= 0 w:p:1: (A.1)

Now, choose some �n� 2 �. Then using the same Taylor expansion
argument as employed in [3] around (A.14) of that paper

dVN (�n� ; �)

d�n
= RN(�N ; �) �n� � �nN(�) w:p:1 (A.2)

where

RN(�N ; �)
d2VN (�

n; �n)

d�nd(�n)T
� =�

lim
N!1

k�N � �n� k =0 w:p:1: (A.3)

Furthermore, as established in [1], [8], and [10], for any �n� 2 �

p
N
dVN (�n� ; �)

d�n
D�!N 0; �2Tn as N !1 (A.4)

where, under the assumption of "t (�n� ) = et and with 	(z; �n) de-
fined via (15), by Parseval’s Theorem

Tn = lim
N!1

E
d

d�n
VN (�n� �)

d

d�n
VN (�n� ; �)

T

=
1

2�

�

��

	 ej!; �n� 	? ej!; �n� d!: (A.5)

Note that, by virtue of the evaluation of dVn(�n; �)=d�n at �n = �n� ,
then Tn defined in (I.5) is not dependent on �. Furthermore, as estab-
lished in [6, Lemma 5.1], this matrix is singular if the model order is

greater than an underlying true one. In this case, Tn will have a spectral
decomposition

Tn = [V1; V2]
S1 0

0 0

V T
1

V T
2

= V1S1V
T
1 (A.6)

where S1 is a diagonal matrix formed from the nonzero eigenvalues of
Tn and V T

1 V1 = I . This allows the definition of the pseudo-inverse

T
y
n as

T yn V1S
�1
1 V T

1 : (A.7)

In this case, (I.4) implies that as N ! 1
p
N	T ej!; �n� T yn dVN (�n� ; �)

d�n

D�!N 0; �2	T ej!; �n� T yn	(ej!; �n� ) : (A.8)

Additionally, combining the two equations in (I.3), and as established
in [8] and [10]

lim
N!1

RN(�N ; �) = lim
N!1

E fRN (�n� ; �)g = Tn + �I (A.9)

element-wise and with probability one. Using this formulation

lim
N!1

	T ej!; �n� T ynE fRN (�n� ; �)g

= 	T ej!; �n� T ynTn + �T yn
= 	T ej!; �n� + �	T ej!; �n� T yn : (A.10)

In progressing to the last equality, it has been recognized that, as estab-
lished in the proof of [6, Lemma 5.1], a vector x is in the kernel of Tn
if, and only if

x?	 ej!; �n� = 0; ! 2 [��; �]: (A.11)

Therefore,	 ej!; �n� is orthogonal to this kernel for all ! and hence

	T ej!; �n� T
y
nTn = 	T ej!; �n� .

Combining (I.2), (I.8), (I.10), and the aforementioned fact that
RN(�N ; �)! Tn+�I with probability one implies that the following
convergence in distribution holds:

lim
�!0

lim
N!1

p
NH ej!; �n� S�T� (ej!)	T ej!; �n�

� �n� � �nN(�) = N (0;�n(!)) (A.12)

where

�n(!) = �2 H ej!; �n�
2

S�?� (ej!)	T ej!; �n�

�T yn	(ej!; �n� )S� (ej!): (A.13)

Finally, with ek being the vector of all zeros save for a 1 in the k0th
position, and with � 2 Cp arbitrary

	T ej�; �n� ek;	
T ej�; �n� T yn	(ej!; �n� )�

=
1

2�

�

��

�?	T ej!; �n� T yn	(ej�; �n� )	
T

� ej�; �n� ekd�

= �?	T ej!; �n� T ynTnek
= �?	T ej!; �n� ek: (A.14)

Therefore, by the same argument as used the proof of [6, Lemma 3.1],

	T ej�; �n� T
y
n	(ej!; �n� ) is equal to 'n(�; !), the reproducing

kernel for space spanned by the columns of 	T (z; �n� ). Using the
same Taylor expansion argument as employed in the proof of Lemma
3.1 then completes the proof.
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Xn =Span
B(z)F (z)z�1

H(z; �n� )A2(z)TG(z)
; 0

T

; . . . ;
B(z)F(z)z�m

H (z; �n� )A2(z)TG(z)
; 0

T

� Span
F (z)z�1

H(z; �n� )A(z)TG(z)
; 0

T

; . . . ;
F (z)z�m

H (z; �n� )A(z)TG(z)
; 0

T

� Span 0;
z�1

D(z)TH(z)

T

; . . . ; 0;
z�m

D(z)TH(z)

T

; 0;
z�1

C(z)TH(z)

T

; . . . ; 0;
z�m

C(z)TH(z)

T

:

APPENDIX B

A. Proof of Corollary 3.1

Proof: Since the conditions of Theorem 3.1 are satisfied, then
the asymptotic in N co-variance is given by (21). Furthermore, in the
case that a Box-Jenkins model structure is employed, then under the
assumptions (27)

d

dck
G(z; �n) =

d

ddk
G(z; �n) =

d

dak
H(z; �n)

=
d

dbk
H(z; �n) = 0 (B.15)

and
d

dak
G(z; �n) = �

B(z)

A2(z)TG(z)
� z
�k

d

db`
G(z; �n) =

z�`

A(z)TG(z)
(B.16)

dH(z; �n)

ddk
= �

C(z)z�k

D2(z)TH(z)

dH(z; �n)

dc`
=

z�`

D(z)TH(z))
: (B.17)

Therefore, since under the assumption of �ue(!) = 0

S�(z) =
F (z) 0

0 �
(B.18)

then, according to (15) and (16), the equation at the top of the page
holds. Furthermore, under the assumption (28) the space Xn may be
reformulated as

Xn =Span f1(z); . . . ; fm +m �m (z);

g1(z); . . . ; gm +m �m (z) (B.19)

fk(z)
z

A
y
(z)
; 0

T

gk(z) [ 0; z

C(z)D(z)T (z)
]T : (B.20)

Therefore, by [6, Lemma 3.4], the multivariable reproducing kernel for
Xn is of the form

'n(�; �) =
'fn(�; !) 0

0 'gm(�; !)
(B.21)

where all the entries in the above matrix are scalar. In this case, [6,
Lemmas 3.1 and 3.2] may be used to quantify'fn(�; !),'

g
n(�; !) Set-

ting �(!) = 'fn(!;!), �(!) = 'gn(!;!) completes the proof.
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Simultaneous Tracking and Stabilization of Mobile Robots:
An Adaptive Approach

K. D. Do, Z. P. Jiang, and J. Pan

Abstract—This note presents a time-varying global adaptive controller
at the torque level that simultaneously solves both tracking and stabiliza-
tion for mobile robots with unknown kinematic and dynamic parameters.
The controller synthesis is based on Lyapunov’s direct method and back-
stepping technique. Simulations illustrate the effectiveness of the proposed
controller.

Index Terms—Global adaptive control, Lyapunov design, mobile robot,
stabilization, tracking.

I. INTRODUCTION

The main difficulty of solving stabilization and tracking control of
mobile robots is because the motion of the systems in question has
more degrees of freedom than the number of inputs under nonholo-
nomic constraints. Furthermore, the necessary condition of Brockett’s
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